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ABSTRACT 

Spatial independent component analysis (sICA) is a technique that attempts to separate da-
ta into spatially independent groups and is meaningful for application in functional mag-
netic resonance imaging. Data that were observed during specific experiment of visual sti-
mulation were analyzed by ICA using Infomax algorithm. Based on correction time 
courses of head movement we marked the components that are closely related to this arti-
fact. Finally we presented the common component map that figure a contribution from the 
most dominant components in particular voxel across whole brain volume.  

1. INTRODUCTION 

Functional magnetic resonance (fMRI) has become the most commonly used method for 
the investigation of human brain function. There are two major concepts assessing human 
brain organization. The functional specialization [3], which is the most widely used, as-
sumes the local specialization of human brain but allows that this specialization can be 
anatomically segregated across different cortical areas. However, this explanation is in-
complete as long as no insight is provided into how the locally specialized activations are 
bound together by context-dependent interactions among these areas, i.e. their functional 
integration. One way how the functional integration can be characterized is by the func-
tional connectivity [2]. Functional connectivity is defined as the correlations between spa-
tially remote neurophysiologic events and can be represented by the pattern of temporal 
correlations (or more generally, deviations from statistical independence) that exists be-
tween distinct neuronal units. Independent component analysis (ICA) is one of the methods 
that are able to evaluate functional connectivity in exploratory fashion [5]. Even though 
this method is already in use for few years, there are still many questions how to handle the 
analysis in correct way and many options how to extend consequent processing of its re-
sults. 



2. DATA AND METHODS 

2.1. EXPERIMENT AND MEASUREMENT PROPERTIES  

Data set used in this work was used from a study [1], where can be found more detailed in-
formation about the experiment organization. Briefly, measurements were performed on 
healthy, right-handed subjects with normal vision. Two types of visual stimuli were pre-
sented to the subjects: standard stimuli represented by white characters ”OOOOO” on a 
dark background; and target stimuli represented by white characters ”XXXXX” on a dark 
background. The standard event occurred more frequently than target events. The subjects 
were instructed to mentally count the target stimuli and report the total number at the end 
of the experiment.    

Functional and anatomical measurements were performed on a 1.5 T MRI tomograph Sie-
mens Symphony. Functional images were acquired using a gradient echoplanar imaging 
(EPI) sequence: TR (scan repeat time) = 1600 ms; TE= 45 ms; FOV=250 mm; flip an-
gle=90; matrix size 64×64; slice thickness = 6 mm; 15 transversal slices per scan; and 256 
scans in total. High-resolution structural T1-weighted images were acquired using a 3D se-
quence: 160 sagittal slices with resolution 256 × 256 resampled to 512 × 512; slice thick-
ness=1.17 mm; TR=1700 ms; TE=3.96 ms; FOV=246 mm; flip angle=15°. High-
resolution images were consequently used during pre-processing operations and as a back-
ground matrix for the results from functional analysis.   

2.2. FUNCTIONAL CONNECTIVITY ANALYSIS 

Following pre-processing steps were applied in the Statistical Parametric Mapping (SPM5) 
program (http://www.fil.ion.ucl.ac.uk/spm) to time-series of fMRI data: realignment for 
the correction of any head motion artifacts; spatial normalization to fit into a standard ana-
tomical space (MNI); interslice time correction; spatial smoothing using a Gaussian kernel 
with a FWHM of 8 × 8 × 8 mm. The voxel size was resampled to 3 × 3 × 3 mm. 

After preprocessing in SPM program, time series of functional images were reduced as in 
spatial domain by selecting only non-zeros voxels that belong to brain volume, as in tem-
poral domain, when this operation was implemented by Principal Component Analysis 
(PCA). 

Functional data X, i.e. p × v matrix of the observed time courses ( p = number of scans, v = 
number of voxels), were first centered by subtracting its mean [4]: 

{ }XEXX −= , (1) 

and then underwent PCA decomposition into m mutually orthogonal components, in our 
case m = 50. At the end of PCA we also included whitening (or sphering) of the data [4]. 
For this purpose we calculated whitening matrix B from sorted eigen vectors contained in 
matrix V and eigen values in matrix λ that we got from covariance of centered data: 

( ) TVB
1−

= λ . (2) 

The resulting principal components (PCs) were established as: 

TPC XBX = . (3) 



The whitening operation is very useful for later independent component analysis, because 
after whitening XPC data has a feature that XPC(XPC)T = D, where D is diagonal matrix, and 
thus further estimation problem in ICA is considerably simplified. 

Functionally connected patterns of activity were estimated using spatial ICA. Formally, 
ICA attempts to separate independent sources that have been mixed together. Assume that 
data X = [x1,. . ., xn] are observed and modeled as a linear combination of n random va-
riables S = [s1,. . .,sn]: 

 

 

Figure 1: 20 spatially independent components depicted on high-resolution structural 
background with appropriate time courses (sorted from left to right and from up to down). 

Component maps were thresholded by p = 0.05 and the negative values are not shown.  



WSX = , (4) 

where S is the m × v matrix whose rows are filled with the (unknown) realizations of spa-
tial components, and W is n × m ”mixing” matrix. Here we already consider observed data 
X that were previously reduced by PCA, i.e. X = XPC. 

The independent components si (ICs) are latent variables, meaning that they cannot be di-
rectly observed. Also the mixing coefficients wij are assumed to be unknown. We can only 
observe the random variables xi, and must estimate wij and si using xi. The ICA model as-
sumes (i) the ICs are statistically independent and (ii) they have non-Gaussian distribu-
tions. Under these assumptions, after estimating the matrix W, we can compute its inverse 
W-1, and obtain the ICs simply with: 

.1XWS −=  (5) 

It is important to mention that if the functional data have Gaussian distribution then com-
ponents received after the application of ICA are the same as these with PCA, i.e. compo-
nents are only mutually orthogonal. Therefore, at the beginning data were checked for their 
non-Gaussianity by calculating kurtosis. The result (k = 2.3) pointed out that data have 
sub-Gaussian distribution (Gaussian distribution has k = 3) and that the using of ICA is 
reasonable.   

The Infomax algorithm [4] with the natural gradient feature was used to estimate coeffi-
cients of mixing matrix W, and subsequently according an equation (5) we got 20 spatially 
independent components. Each spatially independent component is also connected with its 
unique time course that is derived as: 

( )Tc WVT 1−= λ , (6) 

where the term λV can be understood as a dewhitening matrix. The independent compo-
nents are depicted on Fig. 1. 

2.3. POST-HOC ANALYSIS OF COMPONENTS  

Independent components were sorted by mean variance in descending order. In addition, 
each component time course was mean-corrected, linearly detrended, and correlated with 
the six head motion time course that were obtained during the pre-processing step of rea-
lignment [5]. Components whose time courses were highly correlated ( r > 0.5 ) with the 
estimated motion time courses were discarded from further analysis. It concerns compo-
nents with number 13, 14, 15, 20. Afterwards, components were again sorted according to 
mean variance in descending order. 

In the next step of our analysis we wanted to find the dominant component (from all com-
ponents) in each voxel of the whole brain volume, and in this way depict common compo-
nent map. We did not want to consider too small blobs of activity in the components. 
Therefore we checked the final common component map with cubic cluster of size 3 × 3 × 
3 voxels and compact blobs whose size covered in this cluster less then 6 voxels were dis-
carded. The result can be seen on Fig.2.    



 

Figure 2: One slice of the common component map (left side) and histogram depicting 
number of voxels in the brain volume that belongs to particular component (right side).  

3. DISCUSSION AND CONCLUSION 

We performed all steps that are needed for basic analysis of functional connectivity, i.e. 
necessary pre-processing procedures; data reduction in spatial and temporal domain for 
memory less demanding manipulation with entire data set; and ICA decomposition into 
spatially independent components by which a different pattern of activated regions in the 
brain that are functionally connected can be already seen.  

Subsequently, we marked components that are closely connected to head motion artifact. 
At the end, we proposed a way how to jointly depict the most dominant components across 
one brain volume.  

Our next aim is focused on the causal relationship among individual components.  
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